网上有关“什么叫无界函数”话题很是火热,小编也是针对什么叫无界函数寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
无界函数:对任意的m大于等于0且小于正无穷,存在x,使得绝对值fx大于等于m,则fx无界。
无界函数与无穷大量两个概念之间的区别:
1、无界函数的概念是指某个区间上,若对于任意的正数,总存在某个点,使得绝对值fx大于等于m,则称该函数是区间上的无界函数;
2、无穷大量是指在自变量的某个趋限过程下的因变量的变化趋势,若对于任意正数,总存在对一切满足,则称函数是无穷大量。
资料扩展
密度函数卷积怎么求
密度函数卷积用公式Jf(T)g(x-T)dt求得。在泛函分析中,卷积、旋积或招积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。
三角函数的起源
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰。
无界函数的定义是对任意的M>=0且小于正无穷,存在x,使得|f(x)|>=M,则f(x)无界。
无界函数介绍概念是指某个区间上的无界函数即不是有界函数的函数也就是说函数y=f(x)在定义域上只有上界或只有下界或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数。
无界函数解释
定义1设函的定义域为D,若存在一个常数ML使得都有则称为D内有上下界的函数,数L称为在D内的一个上下界定义2设函数若存在一个正数K>0,使得都有则称在D内是有界函数否则,称为无界函数。
有界函数的等价定义:若在D内既有上界又有下界,则称在D内是有界函数在D内有界当且仅当数集是有界集,即其中M,L为常数,分别称为的一个上界和一个下界无界的正面描述是:是无界函数当且仅当使得。
有界函数的几何意义若函数为有界函数,则的图像完全落在直线y=M和y=-M之间注意函数的有界性与函数自变量x的取值范围有关如:y=x,在R内无界,但在任何有限区间内都有界无界函数?类似的我们可以定义无界函数。
关于“什么叫无界函数”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[谏明哲]投稿,不代表中信号立场,如若转载,请注明出处:https://zx-sword.com/zhongxin/40.html
评论列表(3条)
我是中信号的签约作者“谏明哲”
本文概览:网上有关“什么叫无界函数”话题很是火热,小编也是针对什么叫无界函数寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。无界函数:对任意的m大...
文章不错《什么叫无界函数》内容很有帮助